

FAO SPECIFICATIONS AND EVALUATIONS FOR AGRICULTURAL PESTICIDES

CLOTHIANIDIN

(E)-1-(2-chloro-1,3-thiazol-5-ylmethyl)-3-methyl-2-nitroguanidine

TABLE OF CONTENTS

CLOTHIANIDIN

DISCLAIMER	Page	
INTRODUCTION		1
PART ONE		
SPECIFICATIONS FOR CLOTHIANIDIN		
CLOTHIANIDIN INFORMATION		3
CLOTHIANIDIN TECHNICAL MATERIAL (JANUARY 2020)		5
CLOTHIANIDIN SUSPENSION CONCENTRATE FOR		
SEED TREATMENT (JANUARY 2020)		6
PART TWO		
EVALUATIONS OF CLOTHIANIDIN		9
2020 FAO/WHO EVALUATION REPORT ON CLOTHIANIDIN		10
2015 FAO/WHO EVALUATION REPORT ON CLOTHIANIDIN		12
SUPPORTING INFORMATION		15
ANNEX 1: HAZARD SUMMARY PROVIDED BY THE PROPOSER		22
ANNEY 2. REFERENCES		11

DISCLAIMER¹

FAO specifications are developed with the basic objective of promoting, as far as practicable, the manufacture, distribution and use of pesticides that meet basic quality requirements.

Compliance with the specifications does not constitute an endorsement or warranty of the fitness of a particular pesticide for a particular purpose, including its suitability for the control of any given pest, or its suitability for use in a particular area. Owing to the complexity of the problems involved, the suitability of pesticides for a particular purpose and the content of the labelling instructions must be decided at the national or provincial level.

Furthermore, pesticides which are manufactured to comply with these specifications are not exempted from any safety regulation or other legal or administrative provision applicable to their manufacture, sale, transportation, storage, handling, preparation and/or use.

FAO disclaims any and all liability for any injury, death, loss, damage or other prejudice of any kind that may arise as a result of, or in connection with, the manufacture, sale, transportation, storage, handling, preparation and/or use of pesticides which are found, or are claimed, to have been manufactured to comply with these specifications.

Additionally, FAO wishes to alert users to the fact that improper storage, handling, preparation and/or use of pesticides can result in either a lowering or complete loss of safety and/or efficacy.

FAO is not responsible, and does not accept any liability, for the testing of pesticides for compliance with the specifications, nor for any methods recommended and/or used for testing compliance. As a result, FAO does not in any way warrant or represent that any pesticide claimed to comply with a FAO specification actually does so.

¹ This disclaimer applies to all specifications published by FAO.

INTRODUCTION

FAO establishes and publishes specifications* for technical material and related formulations of agricultural pesticides, with the objective that these specifications may be used to provide an international point of reference against which products can be judged either for regulatory purposes or in commercial dealings.

From 1999, the development of FAO specifications follows the **New Procedure**, described in the 1st edition of "Manual for Development and Use of FAO and WHO Specifications for Pesticides" (2002) - currently available as 3rd revision of the 1st edition (2016) - , which is available only on the internet through the FAO and WHO web sites.

This **New Procedure** follows a formal and transparent evaluation process. It describes the minimum data package, the procedure and evaluation applied by FAO and the Experts of the FAO/WHO Joint Meeting on Pesticide Specifications (JMPS). [Note: prior to 2002, the Experts were of the FAO Panel of Experts on Pesticide Specifications, Registration Requirements, Application Standards and Prior Informed Consent, which now forms part of the JMPM, rather than the JMPS.]

FAO Specifications now only apply to products for which the technical materials have been evaluated. Consequently from the year 2000 onwards the publication of FAO specifications under the **New Procedure** has changed. Every specification consists now of two parts namely the specifications and the evaluation report(s):

Part One: The Specification of the technical material and the related formulations of the pesticide in accordance with chapters 4 to 9 of the "Manual on development and use of FAO and WHO specifications for pesticides".

Part Two: The Evaluation Report(s) of the pesticide, reflecting the evaluation of the data package carried out by FAO and the JMPS. The data are provided by the manufacturer(s) according to the requirements of chapter 3 of the "FAO/WHO Manual on Pesticide Specifications" and supported by other information sources. The Evaluation Report includes the name(s) of the manufacturer(s) whose technical material has been evaluated. Evaluation reports on specifications developed subsequently to the original set of specifications are added in a chronological order to this report.

FAO specifications developed under the **New Procedure** do not necessarily apply to nominally similar products of other manufacturer(s), nor to those where the active ingredient is produced by other routes of manufacture. FAO has the possibility to extend the scope of the specifications to similar products but only when the JMPS has been satisfied that the additional products are equivalent to that which formed the basis of the reference specification.

Specifications bear the date (month and year) of publication of the current version.

* NOTE: PUBLICATIONS ARE AVAILABLE ON THE INTERNET AT (http://www.fao.org/agriculture/crops/core-themes/theme/pests/jmps/ps-new/en/

PART ONE

SPECIFICATIONS

CLOTHIANIDIN INFORMATION	3
CLOTHIANIDIN TECHNICAL MATERIAL (JANUARY 2020)	5
CLOTHIANIDIN SUSPENSION CONCENTRATE	
FOR SEED TREATMENT (JANUARY 2020)	6

CLOTHIANIDIN

INFORMATION

ISO common name

Clothianidin (ISO 1750, published)

Chemical name

IUPAC (E)-1-(2-chloro-1,3-thiazol-5-ylmethyl)-3-methyl-2-nitroguanidine

CA [C(E)]-N-[(2-chloro-5-thiazolyl)methyl]-N'-methyl-N''-nitroguanidine

Synonym TI-435

Structural formula

$$\begin{array}{c|c} H_3CHN & NO_2 \\ & & \\ \hline & N \\ & & \\ \hline & & \\ &$$

Molecular formula

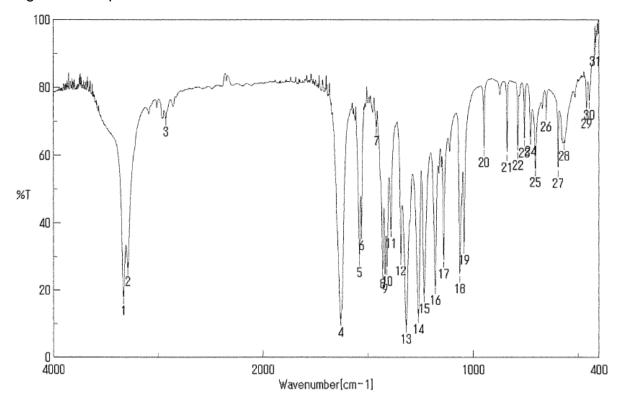
 $C_6H_8CIN_5O_2S$

Relative molecular mass

249.7 g/mol

CAS Registry number

210880-92-5


CIPAC number

738

Identity tests

Retention time in reversed phase HPLC, IR spectrum

Figure 1. IR spectrum of clothianidin

CLOTHIANIDIN TECHNICAL MATERIAL

FAO Specification 738 / TC (January 2020*)

This specification, which is PART ONE of this publication, is based on an evaluation of data submitted by the manufacturers whose names are listed in the evaluation reports (738/2015 & 738/2020). It should be applicable to TC produced by this manufacturer but it is not an endorsement of those products, nor a guarantee that they comply with the specification. The specification may not be appropriate for TC produced by other manufacturers. The evaluation reports (738/2015 & 738/2020) as PART TWO, form an integral part of this publication.

1 Description

The material shall consist of clothianidin together with related manufacturing impurities, and shall be white to pale yellow crystalline powder free from visible extraneous matter and added modifying agents.

2 Active ingredient

2.1 Identity tests (738/TC/M/2, CIPAC Handbook N, p. 15, 2012)

The active ingredient shall comply with an identity test and, where the identity remains in doubt, shall comply with at least one additional test.

2.2 Clothianidin content (738/TC/M/3, CIPAC Handbook N, p. 15, 2012)

The Clothianidin content shall be declared (not less than 975 g/kg) and, when determined, the average measured content shall not be lower than the declared minimum content.

3 Relevant impurities

3.1 By-products of manufacture or storage (Note 1)

Note 1 There are no relevant impurities to be controlled in the TC of the manufacturer identified in the evaluation reports 738/2015 and 738/2020. However a compound (TI-triazan, IUPAC name: (Z)-5-benzyl-1-methyl-N-nitro-1,3,5-triazinan-2-imine, CAS Nr. 141856-57-7) may occur as a result of certain manufacturing processes. If this impurity would occur at > 3 g/kg (of clothianidin) in the products of other manufacturers, it would be designated as a relevant impurity and a clause would be required to limit its concentration.

^{*} Specifications may be revised and/or additional evaluations may be undertaken. Ensure the use of current versions by checking at: http://www.fao.org/agriculture/crops/core-themes/theme/pests/pm/jmps/ps/en/

CLOTHIANIDIN SUSPENSION CONCENTRATE FOR SEED TREATMENT

FAO Specification 738 / FS (January 2020*)

This specification, which is PART ONE of this publication, is based on an evaluation of data submitted by the manufacturer whose name are listed in the evaluation reports (738/2015 & 738/2020). It should be applicable to relevant products of this manufacturer, and those of any other formulators who use only TC from the evaluated source. The specification is not an endorsement of those products, nor a guarantee that they comply with the specification. The specification may not be appropriate for the products of other manufacturers who use TC from other sources. The evaluation reports (738/2015 & 738/2020) as PART TWO, form an integral part of this publication

1 Description

The material shall consist of a suspension of fine particles of technical clothianidin, complying with the requirements of FAO specification 738/TC (January 2020), in an aqueous phase together with suitable formulants, including colouring matter (Note 1). After gentle stirring or shaking, the material shall be homogeneous (Note 2) and suitable for further dilution with water if necessary.

2 Active ingredient

2.1 Identity tests (738/FS/M/2 CIPAC Handbook N, p. 20, 2012)

The active ingredient shall comply with an identity test and, where the identity remains in doubt, shall comply with at least one additional test.

2.2 Clothianidin content (738/FS/M/3 CIPAC Handbook N, p. 21, 2012)

The clothianidin content shall be declared (g/kg or g/l at $20 \pm 2^{\circ}$ C, Note 3) and, when determined, the average content measured shall not differ from that declared by more than the appropriate tolerances.

Declared content in g/kg or g/L at 20 ± 2°C	Tolerance
above 100 up to 250 above 250 up to 500 above 500	± 6% or of the declared content ± 5% or of the declared content ± 25 g/kg or g/L of the declared content
Note: the upper limit is included in the range	

^{*} Specifications may be revised and/or additional evaluations may be undertaken. Ensure the use of current versions by checking at: http://www.fao.org/agriculture/crops/core-themes/theme/pests/pm/jmps/ps/en/

3 Relevant impurities

3.1 By-products of manufacture or storage (Note 4)

4 Physical properties

4.1 **Pourability** (MT 148.1, CIPAC Handbook J, p. 133, 2000)

Maximum "residue": 4 %.

4.2 Wet sieve test (MT 185, CIPAC Handbook K, p.149, 2003) (Note 5)

Maximum: 0.5 % retained on a 75 µm test sieve.

4.3 Persistent foam (MT 47.3, CIPAC Handbook O, p. 177, 2017) (Note 6)

If the product is intended to be used after dilution, persistent foam is to be measured at a concentration of 30% w/v in water. In those conditions, the maximum is 60 mL after 1 min. This clause is not applicable where the product is used without dilution.

4.4 Suspensibility (MT 184.1) (Notes 7, 8 & 9)

If the product is intended to be used after dilution, suspensibility is to be measured at the highest and lowest concentration provided they are within the scope of the method. In those conditions, a minimum of 85 % of the clothianidin content found under 2.2 shall be in suspension after 30 min in CIPAC Standard Water D at 30 \pm 2°C. This clause is not applicable where the product is used without dilution.

4.5 Adhesion to seeds (MT 194, CIPAC Handbook N, p.145, 2012)

Wheat: Min.: 90%
Sugar beet: Min.: 98%
Rape seed: Min.: 95%
Maize: Min.: 90%

5 Storage stability

5.1 **Stability at 0°C** (MT 39.3, CIPAC Handbook J. p.126, 2000)

After storage at $0 \pm 2^{\circ}$ C for 7 days, the formulation shall continue to comply with the clause for:

- wet sieve test (4.2).

5.2 Stability at elevated temperature (MT 46.4) (Note 10).

After storage at $54 \pm 2^{\circ}$ C for 14 days, the determined average active ingredient content must not be lower than 95 % relative to the determined average content found before storage (Note 11) and the formulation shall continue to comply with the clauses for:

- pourability (4.1),
- wet sieve test (4.2),
- suspensibility (4.4)

- Note 1 The influence of treatment on germination is of major importance but it is not the subject of a specification clause because no test method is applicable to all types of seeds. To avoid adverse effects, users should apply the formulation strictly according to the recommendations of the manufacturer and should not treat seeds for which effect on germination is not known. Treated seeds should be stored in a suitable container and should be protected from excessive temperature and moisture.
 - The formulation shall contain a dye or pigment that permanently colours the seed after treatment (red is recommended, but other colours are possible). In some countries, there may be a legal requirement that a specific colour shall be used. The same colour must not be used for denaturing seeds intended for use as livestock feeding stuffs.
- Note 2 Before sampling to verify the formulation quality, inspect the commercial container carefully. On standing, suspension concentrates usually develop a concentration gradient from the top to the bottom of the container. This may even result in the appearance of a clear liquid on the top and/or sediment on the bottom. Therefore, before sampling, homogenize the formulation according to the instructions given by the manufacturer or, in the absence of such instructions, gently shake the commercial container (for example by inverting the closed container several times, large containers must be opened and stirred adequately). After this procedure, the container should not contain a sticky layer of non-dispersed matter at the bottom. A suitable and simple method of checking for a non-dispersed sticky layer ("cake") is by probing with a glass rod or similar device adapted to the size and shape of the container. All the physical and chemical tests must be carried out on a laboratory sample taken after the recommended homogenization procedure.
- Note 3 Unless homogenization is carried out carefully, it is possible for the sample to become aerated. This can lead to errors in the determination of the mass per millilitre, and in calculation of the active ingredient content (in g/l) if methods other than MT 3.3 are used. If the buyer requires both g/kg and g/l at 20°C, then in case of dispute the analytical results shall be calculated as g/kg.
- Note 4 There are no relevant impurities to be controlled in the products of the manufacturer identified in the evaluation reports 738/2015 and 738/2020. However a compound (TI-triazan, IUPAC name: (Z)-5-benzyl-1-methyl-*N*-nitro-1,3,5-triazinan-2-imine, CAS Nr. 141856-57-7) may occur as a result of certain manufacturing processes. If this impurity would occur at > 3 g/kg (of clothianidin) in the products of other manufacturers, it would be designated as a relevant impurity and a clause would be required to limit its concentration.
- <u>Note 5</u> This test should detect coarse particles (e.g. caused by crystal growth) or extraneous materials which could cause blockage of spray nozzles or filters of the application equipment.
- Note 6 The mass of sample to be used in the test should correspond to the highest rate of use recommended by the supplier. The test is to be conducted in CIPAC standard water D.
- Note 7 MT 184.1 is the revised version of MT 184 and was accepted as full CIPAC method in 2019. Prior to its publiction in a next Handbook, copies of the method can be obtained through https://www.cipac.org/index.php/methods-publications/pre-published-methods
- Note 8 Suspensions are to be tested at the highest and lowest recommended rates of use, provided that they are within the scope of MT 184.1 see Footnote 1.
- Note 9 Chemical assay is the only fully reliable method to measure the mass of active ingredient still in suspension. However, simpler methods such as gravimetric and solvent extraction determination may be used on a routine basis provided that these methods have been shown to give equal results to those of the chemical assay method. In case of dispute, the chemical method shall be the referee method.
- Note 10 MT 46.4 is the harmonized and revised version of MT 46.3 and was adopted at the 2019 CIPAC Meeting in Braunschweig. Prior to its publiction in an next Handbook, copies of the method can be obtained through https://www.cipac.org/index.php/methods-publications/pre-published-methods
- Note 11 Samples of the formulation taken before and after the storage stability test may be analyzed concurrently after the test in order to reduce the analytical error.

PART TWO

EVALUATION REPORTS

CLOTHIANIDIN

2020	PAO/WHO evaluation report based on data submitted								
	by BASF S	SE (TC, FS)	10						
2015	FAO/WHO	evaluation report based on data submitted							
	by Bayer C	CropScience (TC, FS)	10						
	Supporting	information	13						
	Annex 1:	Hazard summary provided by the proposer	20						
	Annex 2:	References	42						

CLOTHIANIDIN

FAO/WHO EVALUATION REPORT 738/2020

Recommendations

The Meeting recommended the following:

- (i) The change of manufacturer of the FAO reference specifications for clothianidin TC and FS from Bayer CropScience to BASF SE should be noted by FAO.
- (ii) The editorially updated specifications for clothianidin TC and FS should be adopted by FAO.
- (iii) The change of manufacturer of the WHO reference specification for clothianidin TC from Bayer CropScience to BASF SE should be noted by WHO.
- (iv) The editorially updated specifications for clothianidin TC and clothianidin + deltamethrin WP-SB should be adopted by WHO.

Appraisal

The Meeting noted that in a press release dated on April 26, 2018², BASF SE, Germany (BASF) announced the acquisition of clothianidin TC and certain formulated products from Bayer CropScience (BCS). BCS was up to then the holder of one of the reference FAO and WHO specification for clothianidin TC and of the FAO specification for clothianidin FS (FAO/WHO evaluation reports 738/2015).

Later on, FAO and WHO were contacted by BCS in an official letter dated of October 31, 2019 and in an e-mail dated on December 10, 2019 stating the following:

- The intellectual property rights for clothianidin TC and certain formulations used in agriculture from BCS had been acquired by BASF.
- The manufacturing of clothianidin TC and certain formulations used in agriculture which are now under control of BASF continue to comply with all specifications clauses and limits as per the data package in support of clothianidin that had been evaluated by JMPS in 2015.
- BASF assure the continued support and stewardship for clothianidin TC and certain formulations acquired from BCS.
- The clothianidin + deltamethrin WP-SB formulation used in public health remains the property of BCS.

The Meeting therefore concluded that both the manufacturing sites and processes for manufacturing clothianidin TC and certain formulated products used in agriculture were not affected by the transition from BCS to BASF.

The Meeting also noted that the specifications for clothianidin FS and clothianidin + deltamethrin WP-SB needed some editorial updates to reflect the latest versions of certain physical-chemical test methods (Suspensibility: MT 184.1 instead of MT 184, Stability at

² https://www.basf.com/global/en/media/news-releases/2018/04/p-18-182.html

FAO SPECIFICATIONS AND EVALUTIONS FOR CLOTHIANIDIN page 11 of 49

elevated temperature MT 46.4 instead of MT 46.3, both considered to provide equivalent results with the previous versions).

For these reasons, the Meeting recommended that BASF should be noted as new holder of the reference specifications for clothianidin TC previously owned by BCS and formulated products used in agriculture, and that these specifications should be considered as the new reference specifications.

CLOTHIANIDIN

FAO/WHO EVALUATION REPORT 738/2015

Recommendation

The Meeting recommended that the specifications for clothianidin TC and FS proposed by Bayer CropScience, as amended, should be adopted by FAO.

Appraisal

The Meeting considered data on clothianidin submitted by Bayer CropScience (BCS) in support of FAO specifications for the technical material and a FS formulation.

The insecticide clothianidin was developed by Takeda Chemical Industries in Japan in the 1990. This also explains the code number allocated to that compound - TI-435 - , with "TI" standing for Takeda Industries. Takeda was later incorporated into Sumitomo, and clothianidin was further developed jointly by Sumitomo Chemical Company (SCC) and Bayer CropScience (BCS). Therefore, some of the nonpublished studies referenced in the hazard summary are owned by Sumitomo, some by Bayer. This may explain the unusual situation, that two reference specifications for the same compound were developed and published - the first one for Sumitomo in 2009, and the second for Bayer in 2015 due to the fact that two slightly different specifications each with supporting data were evaluated and adopted by FAO and WHO (see below).

Clothianidin is a neonicotinoid insecticide that controls insects by acting as an agonist at the nicotinic acetylcholine receptor, affecting the synapses in the insect central nervous system. Clothianidin is not under patent.

Clothianidin was evaluated by the FAO/WHO JMPR in 2010 [JMPR, 2010] and JMPR agreed to re-evaluate the clothianidin residue definition in 2011.

It was evaluated by US EPA, the results were published in the US Federal Register [EPA, 2011]. Clothianidin was evaluated by the European Commission as part of the EU review of existing active substances for inclusion in Annex I of the Council directive 91/414/EEC in 2006. It was included in Annex I with a minimum purity of 960 g/kg [CR, 2011].

The data for clothianidin were evaluated in support of FAO specifications based on the draft specifications and the supporting data provided by Bayer CropScience in 2008 and a revised submission was received in November 2011 and April 2015. The FAO specifications for clothianidin were first published in 2011 and last modified in 2015 for TC, SC, GR, SG, FS and WG based on submission of data by Sumitomo Chemical Co., Ltd. [FAO, 2015].

The supporting data on clothianidin TC, WS and FS formulations were in accordance with the requirements of the second revision of the first edition of the Manual on development and use of FAO and WHO specifications for pesticides [FAO/WHO Manual] and supported the proposed specifications. In the updated submission BCS no longer supported the WS specification [Bascou, 2012].

A statement was provided by the German pesticides regulatory authority confirming that the confidential data on the manufacturing process and declaration of composition submitted to the FAO were the same as those submitted to the national regulatory authority [Hänel, 2015].

Clothianidin is a white to cream coloured crystalline powder. It is not volatile and has a melting point of 176.8 °C. It is slightly soluble in water at 0.33 g/l at 20°C. It is not fat soluble and is not likely to bioaccumulate with a log P_{ow} of circa 0.9. It is considered to be stable to hydrolysis at all environmentally relevant pHs. It undergoes rapid photolysis with a half lifehalf-life of 3.3 hours at pH 7 at 25°C. Clothianidin is a strong base with a pK_a of 11.

The Meeting was provided with commercially confidential information on the manufacturing process and batch analysis data on all impurities present below or above 1 g/kg and their manufacturing limits in the TC. Mass balances were 99.57-100.24% in the 5-batch data.

At the 2009 JMPS Meeting it was discussed whether or not there are two reference sources of clothianidin or if Sumitomo is the reference source and Bayer should be considered equivalent on the basis of the additional toxicological data on their impurities. As Sumitomo and BCS utilize different manufacturing processes leading to different minimum content of the active ingredient, and, more importantly, the two TC have entirely different impurity profiles, the Meeting considered that two separate specifications should therefore be developed for the TC produced by Sumitomo and BCS. The minimum content of the TC produced by BCS is 975 g/kg, however based on the submitted data an even higher minimal purity could have been specified.

In the submission Bayer CropScience proposed that there are no impurities of toxicological relevance. The impurity TI-435-triazan was reported to be sensitizing [M-020895-01-1] and according to the criteria defined in the FAO/WHO Manual, (Determination of the relevance or non-relevance of impurities and Appendix J) it would be relevant. The 2009 JMPS meeting considered that the impurities, with the exception of TI-435-triazan are not relevant. To decide on the relevance of this impurity a study using OECD 406 (Directive 92/69/EC, Method B.6) on the Bayer technical material was requested. The Meeting noted that BCS had tested the impurity only, however a test is needed on the TC with a representative content of the impurity. In order to demonstrate the non-relevance of the impurity TI-435-triazan contained in the clothianidin batches at the specified maximum concentration of 0.3%, BCS conducted a skin sensitization study, that has proved that under the conditions of the maximization test. clothianidin TC is not a sensitizer IM-424556-01-2]. As a consequence there is no need to consider TI-435-triazan as a relevant impurity. Nevertheless this impurity may be potentially relevant in other products where the concentration would be higher. The Meeting agreed to add a footnote in the specification to reflect that and a method should be available for the determination of the impurity. The HPLC method for the determination of the impurity was submitted in May 2015 [AM025915MP1].

The recent submission of April 2015 contained one new impurity in comparison to the data submitted in 2011. Additional data were requested about the relevance of this impurity.

BCS confirmed that the new impurity identified was present in BCS clothianidin TC in batches used in nontoxicity studies, in batches used in genotoxicity studies as well as in skin sensitization study. It has been identified only recently due to the improvement of the

analytical method. Quantification of this formerly unspecified impurity with reference standard resulted in its specification as significant impurity.

The extension of the scope of the HPLC method for the determination of clothianidin in TC and FS formulations was accepted as a full CIPAC method in 2011. [CIPAC Handbook N].

The proposed specifications for TC and FS were essentially in accordance with the requirements of the FAO/WHO Manual. If the FS formulation is to be used diluted, the clause for persistent foam is given on the basis of a 30% w/v concentration which may be the used concentration and it was already agreed in the published specification, too. The clause for suspensibility is given on basis on the highest and lowest concentration of use which means that the reference to the CIPAC method in the specification may exceed the upper range of concentration which is broadly speaking about 10 %. The test for suspensibility is based on the sedimentation of formulation particles in a water column and determination of a possible accumulation of particles in the lowest 10 % after a given time. Any use concentration that is near or greater than the lower 10 % is not within the scope of the method.

The Meeting considered the differences in the descriptions and in the clauses of the previously published specifications for clothianidin FS proposed by Sumitomo and BCS. The Meeting concluded that the description clauses and limits in the clauses for 'Persistent foam', 'Suspensibility' and 'Adhesion to seeds' in the published and proposed specifications justify two different FS specifications.

SUPPORTING INFORMATION FOR EVALUATION REPORT 738/2015

USES

Clothianidin is a systemic insecticide which acts as acute contact and stomach poison. Clothianidin belongs to the chemical class of neonicotinoid insecticides. The mode of action is by agonizing the insect nicotinic acetylcholine receptors in the nervous system of pest insects.

Clothianidin has a broad spectrum of activity, particularly against sucking insects such as aphids, leaf hoppers, thrips and white flies. Furthermore, various species of beetles (e.g. *Atomaria* spp., *Agriotes lineatus*, *Diabrotica* spp.) and some species of flies (e.g. *Oscinella* frit and *Pegomyia* spp.) and cut worm (e.g. *Agrotis* spp.) are effectively controlled. Clothianidin formulations are used in seed treatments as well as for foliar spray applications. BCS clothianidin is currently registered in the Europe, Northern and Southern America and Africa.

IDENTITY OF THE ACTIVE INGREDIENT

ISO common name (ISO 1750, published)

Clothianidin

Chemical name(s)

IUPAC

(E)-1-(2-chloro-1,3-thiazol-5-ylmethyl)-3-methyl-2-nitroguanidine

CA

[C(E)-N-[(2-chloro-5-thiazolyl)methyl]-N-methyl-N'-nitroguanidine

Synonyms

TI-435

Structural formula

$$\begin{array}{c|c} H_3CHN & NO_2 \\ & \searrow & N \\ & HN & S \\ & \searrow & CI \\ \end{array}$$

Molecular formula

C6H8CIN5O2S

Molar mass

249.7 g/mol

CAS Registry number

210880-92-5

CIPAC number

738

Identity tests

HPLC UV-detection and IR

Note: Sumitomo Chemical Company is the owner of the initial data package for clothianidin. Bayer CropScience has a commercial arrangement with Sumitomo and has a letter of access to the initial data package.

Table 1. Physical-chemical properties of pure clothianidin

Parameter	Value(s) and conditions	Purity %	Method reference (and technique if the reference gives more than one)	Study reference
Vapour pressure	1.3 x 10 ⁻¹⁰ Pa at 25°C 3.8 x 10 ⁻¹¹ Pa at 20°C (extrapolated)	99.7	OECD 104 EC A.4	M-026219-03-2
Melting point, boiling point and/or temperature of decomposition	Melting point: 176.8°C Boiling point: decomposes before boiling Decomposition temperature: 242°C	99.7	OECD 102 EC A.1 (DSC)	M-025309-02-1
Solubility in water	pH 7: 0.327 g/L at 20°C determined in Milli-Q water (resistivity at least 17 megaohms)	99.7	OECD 105 (equivalent to EEC A.6, flask method)	M-026209-04-1
Octanol/water partition coefficient	pH 4 log P _{OW} = 0.89 at 25 °C pH 7 log P _{OW} = 0.91 at 25 °C pH 10 log P _{OW} = 0.87 at 25 °C	99.7	EEC A8	M-041740-01-1
Hydrolysis characteristics	Half-life = 14.4 days at 50°C at pH 9 Half-life = 3.7 days at 62°C at pH 9 Half-life = 0.7 days at 74°C at pH 9 Stable at 50°C at pH 4 and 7 (<10% degradation after 5 days) Stable at 25°C at pH 5, 7 and 9 (<5% degradation after 33 days)	>98.0	EPA Series 161- 1 EEC method C.7	M-048047-01-1

Parameter	Value(s) and conditions	Purity %	Method reference (and technique if the reference gives more than one)	Study reference
Photolysis characteristics	Half-life 3.3 hours in sterile buffer pH 7 at 25°C Equivalent to 0.6 days of summer solar exposure at Pheonix, Arizona, US (40° latitude) Equipment: Suntest® Light source: Xenon lamp with UV cut-off filter at 290 nm. Intensity (300-800 nm) = 1027 W/m² by radiometry. Photonflow density = 125.86 X 1014 s ⁻¹ cm ⁻² . Quantum yield (Φ) = 0.014	>99.0	EPA Series 161- 2 SETAC	M-023549-02-1 M-010153-02-1
Dissociation characteristics	pK _a = 11.09 (at 20°C)	99.7	OECD 112 (spectrophoto- metric method)	M-026209-04-1
Solubility in organic solvents	< 0.00104 g/l <i>n</i> -heptane at 25°C 1.32 g/l dichloromethane at 25°C 0.0128 g/l xylene at 25°C 0.938 g/l <i>n</i> -octanol at 25°C 15.2 g/l acetone at 25°C 2.03 g/l ethyl acetate at 25°C 6.26 g/l methanol at 25°C	99.7	OECD 105 (equivalent to EEC A.6, flask method)	M-026209-04-1

Table 2. Chemical composition and properties of BCS clothianidin technical material (TC)

Manufacturing process, maximum limits for impurities ≥ 1 g/kg, 5 batch analysis data	Confidential information supplied and held on file by FAO. Mass balances were 99.57 - 100.24 % and percentages of unknowns were <0.2 %.
Declared minimum clothianidin content	975 g/kg
Relevant impurities ≥ 1 g/kg and maximum limits for them	None
Relevant impurities < 1 g/kg and maximum limits for them	None
Stabilisers or other additives and maximum limits for them	None
Melting temperature range of the TC	172 - 174°C (98.0%) [Smeykal 2012]

METHODS OF ANALYSIS AND TESTING

The analytical method for the active ingredient in TC is HPLC using UV detection at 225 nm and internal standardization. The clothianidin content of the TC and FS formulations is determined by the CIPAC method 783/TC/M/3 and 783/FS/M/3.

The method(s) for determination of impurities are based on a HPLC method using UV detection and internal standardisation.

There are no relevant impurities in clothianidin technical material.

Test methods for determination of physico-chemical properties of the technical active ingredient were OECD, EPA, and/or EC while those for the formulations were for example, CIPAC, as indicated in the specifications.

FORMULATIONS AND CO-FORMULATED ACTIVE INGREDIENTS

The main formulation types available are FS and WS.

Clothianidin can be co-formulated with other insecticides or fungicides like *beta*-cyfluthrin, fluoxastrobin, imidacloprid, methiocarb, prothioconazole, tebuconazole, thiodicarb, thiram or triazoxide.

These formulations are registered and sold in Europe, Northern and Southern America, Africa.

CONTAINERS AND PACKAGING

No special requirements for containers and packaging have been identified.

EXPRESSION OF THE CONTENT OF THE ACTIVE INGREDIENT

The active ingredient is expressed and quantified as clothianidin.

ANNEX 1

HAZARD SUMMARY PROVIDED BY THE PROPOSER

Notes.

- (i) The proposer confirmed that the toxicological and ecotoxicological data included in the summary below were derived from clothianidin having impurity profiles similar to those referred to in the table above.
- (ii) The conclusions expressed in the summary below are those of the proposer, unless otherwise specified.

Table 3. Toxicology profile of clothianidin technical material, based on acute toxicity, irritation and sensitization

Species	Test	Purity %	Guideline, duration, doses and conditions	Result	Study reference
Rat male/female	Oral	96.0	JMAFF 59 NohSan No 4200; JMAFF 63-44; OECD 401; Directive 92/69/EC Method B.I.; Directive 92/18/EEC, L97; US-EPA Section 81-1; OPPTS 870. 1100	LD ₅₀ = > 5000 mg/kg bw	M-027393-01-1
Rat male/female	Acute neurotoxicity gavage	95.2- 96.0	US-EPA-FIFRA, Guideline 81- 8(SS); US-EPA OPPTS 870.6200 0-100-200-400 mg/kg bw/d	NOELs (male / female) Overall = > 60 / 100 mg/kg bw Neurotoxicity = > 400 mg/kg bw/d not neurotoxic	M-027750-03-1
Mouse male/female	Oral	96.0	OECD 401; Directive 92/69/EC, Method B. 1.; Directive 92/18/EEC, L97; US-EPA Section 81-1; US-EPA OPPTS 870.1100	LD ₅₀ = 389 mg/kg bw (m) 465 mg/kg bw (f)	M-027394-01-1
Rat male/female	Dermal	96.0	JMAFF 59 NohSan No 4200; JMAFF 63-44; OECD 402; Directive 92/69/EC, Method B.3.; Directive 92/18/EEC, L97; US-EPA Section 81-2; US-EPA OPPTS 870.1200 24 h semi-occlusive conditions	LD ₅₀ = > 2000 mg/kg bw	M-027396-01-1

Species	Test	Purity %	Guideline, duration, doses and conditions	Result	Study reference
Rat male/female	Inhalation	96.0	JMAFF 59 NohSan No 4200; JMAFF 63-44; OECD 403; Directive 92/69/EC, Method B.2.; Directive 92/18/EEC, OJEC, L97; USA-EPA Section 81-3; US-EPA OPPTS 870.1330 4.5 h exposure	LC ₅₀ = > 6.141 mg/L	M-027390-01-1
Rabbit male/female	Skin irritation	96.0	JMAFF 59 NohSan No 4200; JMAFF 63-44; OECD 404; Directive 92/69/EC, Method B.4.; Directive 92/18/EEC L97; US-EPA Section 81-5; US-EPA OPPTS 870.2500 4 h exposure	Non-irritating	M-027402-01-1
Rabbit male	Eye irritation	96.0	OECD 405; Directive 92/69/EC, Method B.5.; Directive 92/18/EEC L97; US-EPA Section 81-4; US-EPA OPPTS 870.2400 24 h exposure	Non-irritating	M-027400-01-1
Guinea pig	Skin sensitization	96.0	OECD 406; Directive 92/69/EC, Method B.6.; Directive 92/18/EEC L97; US-EPA Section 81-6; US-EPA OPPTS 870.2600	Non-sensitizing	M-027406-01-1

Table 4. Toxicology profile of technical clothianidin based on repeated administration (sub-acute to chronic)

Species	Test	Purity %	Guideline, duration, doses and conditions	Result	Study reference
Rat male/female	Sub-acute feeding	97.5	OECD 407; Directive 92/69/EEC (OJ No. L383A, 29.12.92), Part B, Method B.7.; EPA Guideline in Subdivision F. Hazard Evaluation: Human and Domestic Animals, November 1984; JMAFF 59 Nohsan No. 4200 4 weeks 0-1250-2500-5000-7500 ppm (equivalent to: 0-120-249-475-602 mg/kg bw/d (male), 0-137-228-454-689 mg/kg bw/d (female))	NOAEL = 120 / 137 mg/kg bw/d LOEL = 249 / 228 mg/kg bw/d	M-027408-01-1
Mouse male/female	Sub-acute feeding	97.5	OECD 407; Directive 92/69/EEC (OJ No. L383A, 29.12.92), Part B, Method B.7.: EPA Guideline in Subdivision F. Hazard Evaluation: Human and Domestic Animals; JMAFF Nohsan No. 4200 deviation: duration 4 weeks 0-500-1000-2000-4000 ppm (equivalent to: 0-90-190-383-683 mg/kg bw/d (male) 0-122-248-491-619 mg/kg bw/d (female))	NOAEL = 190 / 248 mg/kg bw/d LOEL = 383 / 491 mg/kg bw/d	M-027413-01-1
Dog female	Dose-range finding (palatability) feeding	95.2	Exposure to increasing dose levels 0 (for 11 days) - 3000 / 4000 / 5000 ppm (days 1-3 / 4-8 / 9-11) (equivalent to: 0- 51.1/50.8/51.8 mg/kg bw/d)	NOEL = 51.8 mg/kg bw/d	M-027385-01-1

Species	Test	Purity %	Guideline, duration, doses and conditions	Result	Study reference
Dog male/female	Dose-range finding feeding	95.2	Directive 88/302/EEC, Method B.27; US-EPA FIFRA Subdivision F, Section 82-1; US-EPA 870.3150; JMAFF 59 Nohsan No. 4200; mainly in accordance to OECD 409 4 weeks, 3 animals/sex/group 0-1250-2500-5000 ppm (equivalent to: 0-36.3-35.8-62.4 mg/kg bw/d (male) 0-35.6-52.3-57.4 mg/kg bw/d (female))	NOAEL = 36.3 / 35.6 mg/kg bw/d LOEL = 35.8 / 52.3 mg/kg bw/d	M-027342-01-1
Rat male/female	Sub-acute dermal	95.2	US-EPA OPPTS 870.3200; JMAFF 59 Nohsan No. 4200; Directive 88/302/EEC (OJEC No. L 133/27) Part B; OECD 410 6 hrs/day, 28 days 0-100-300-1000 mg/kg bw/d	NOEL = > 1000 mg/kg bw/d	M-027480-01-1
Rat male/female	Sub-chronic feeding	95.3	FIFRA 82-1; TSCA 798.2650; US-EPA OPPTS 870.3100, OECD 408; JMAFF 59 NohSan No. 4200; Directive 87/302/EEC, part B 97 days 0-150-500-3000 ppm (equivalent to: 0-9.0-27.9-202 mg/kg bw/d (male) 0-10.9-34.0-254 mg/kg bw/d (female))	NOAEL = 27.9 / 34.0 mg/kg bw/d LOEL = 202 / 254 mg/kg bw/d	M-027268-01-1

Species	Test	Purity %	Guideline, duration, doses and conditions	Result	Study reference
Dog male/female	Sub-chronic feeding	95.2	US-EPA-FTFRA Section. 82-1; US-EPA-OPPTS OPPTS 870.3150; OECD 409; JMAFF 59 Nohsan No. 4200; Directive 88/302/EEC (OJEC No. L 133/12), Part B 13 weeks 0-325-650-1500-2250 ppm (equivalent to: 0-9.2-19.3-40.9-58.2 mg/kg bw/d (male) 0-9.6-21.2- 42.1-61.8 mg/kg bw/d (female))	NOAEL = 19.3 / 21.2 mg/kg bw/d LOEL = 40.9 / 42.1 mg/kg bw/d	M-036499-02-1
Dog male/female	Sub-chronic feeding	95.2	EPA-FIFRA Guideline 83-1; EPA-OPPTS Guideline Section 870.4100; OECD 452; JMAFF 59 Nohsan No. 4200, Directive 88/302/EEC, Part B 52 weeks 0-325-650-1500-2000ppm (equivalent to: 0-7.8-16.6-36.3-46.4 mg/kg bw/d (male) 0-8.5-15.0-40.1-52.9 mg/kg bw/d (female))	NOAEL = 36.3 / 40.1 mg/kg bw/d LOEL = 46.4 / 52.9 mg/kg bw/d	M-036542-01-1
Rat male/female	Chronic oncogenicity feeding	95.2- 95.5	JMAFF 59 NohSan No. 4200; OECD 453; EEC 88/302/EEC; FIFRA F, 83-5; OPPTS 870.4300 104 weeks 0-150-500-1500-3000 ppm (equivalent to: 0-8.1-27.4-82-157 mg/kg bw/d (male) 0-9.7-32.5-97.8-193 mg/kg bw/d (female))	NOAEL = 27.4 / 9.7 mg/kg bw/d LOEL = 82 / 32.5 mg/kg bw/d not carcinogenic	M-031986-02-1

Species	Test	Purity %	Guideline, duration, doses and conditions	Result	Study reference
Mouse male/female	Oncogenicity feeding	95.2	JMAFF 59 NohSan No. 4200; OECD 451; EEC 88/302/EEC; FIFRA F, 83-2; OPPTS 870.4200 78 weeks 0-100-350-700/2000/2500/2000/1800 (week 1- 4/ 5-10/ 11-34/ 35-termination 2000 ppm (m)/ 1800 ppm (f)) -1250 ppm (equivalent to: 0-13.5-47.2-171.4-251.9 mg/kg bw/d (male) 0-17.0-65.1-215.9-281.1 mg/kg bw/d (female))	NOAEL = 47.2 / 65.1 mg/kg bw/d LOEL = 171.4 / 215.9 mg/kg bw/d not carcinogenic	M-032363-02-1
Rat male/female	Pilot reproduction one generation	95.2- 96.0	US-EPA-FIFRA, Section 158.340, No. 83-4: US-EPA-TSCA, 40 CFR Section 798.4700: Guideline 87/302/EEC; OECD 416; J MAFF, 59 NohSan No. 4200 pre-mating 8 weeks 0-50-100-500-1000 ppm (equivalent during pre-mating to: 3.2-3.5 / 5.9-6.8 / 31.7-36.4 / 66.6 - 70.8 mg/kg bw/d)	NOEL repro. = > 66.6 mg/kg bw/d	M-027255-01-1

Species	Test	Purity %	Guideline, duration, doses and conditions	Result	Study reference
Rat male/female	Reproduction 2-generation	95.3- 96.0	US-EPA, OPPTS 870.3800; Directive 91/414/EEC; OECD 416; JMAFF, 59 NohSan No. 4200 0-150-500-2500 ppm (equivalent to both generations combined: 0-10.2-32.7-179.6 mg/kg bw/d (male) 0-11.8-37.9-212.9 mg/kg bw/d (female)	Parental NOEL = 32.7/11.8 mg/kg bw/d LOEL = 179.6/37.9 mg/kg bw/d Reproductive NOEL = >179.6/ >212.9 mg/kg bw/d Offspring NOEL = 10.2/11.8 mg/kg bw/d LOEL = 32.7/37.9 mg/kg bw/d	M-031280-02-1
Rat female	Dose-range finding development al toxicity	96.0	US-EPA OPPTS 870.3700 gestation days 6-19 0-125-250-500-1000 mg/kg bw/d	Maternal NOAEL = not established LOEL = 125 mg/kg bw/d Developmental NOAEL = 125 mg/kg bw/d LOEL = 250 mg/kg bw/d	M-027430-02-1

Species	Test	Purity %	Guideline, duration, doses and conditions	Result	Study reference
Rat female	Development al toxicity	95.2	Guideline 88/302/EEC; OECD 414; US-EPA OPPTS 870.3700; JMAFF 59 NohSan no. 4200 gestation days 6-19 0-10-40-125 mg/kg bw/d	Maternal NOEL = 10 mg/kg bw/d LOEL = 40 mg/kg bw/d Developmental NOAEL = 125 mg/kg bw/d LOEL = > 125 mg/kg bw/d not teratogenic	M-027416-01-1
Rabbit female	Dose-range finding development al toxicity	96.0	US-EPA OPPTS 870.3700 gestation days 6-28 0-62.5-125-250-500 mg/kg bw/d	Maternal NOAEL = 62.5 mg/kg bw/d MTD < 125 mg/kg bw/d Developmental NOAEL > 62.5 mg/kg bw/d	M-027436-02-1
Rabbit female	Development al toxicity	95.2- 95.5	Guideline 88/302/EEC, OECD 414; US-EPA OPPTS 870.3700; JMAFF 59 NohSan no. 4200 gestation days 6-28 0-10-25-75-100 mg/kg bw/d	Maternal NOEL = 10 mg/kg bw/d LOEL = 25 mg/kg bw/d Developmental NOAEL = 75 mg/kg bw/d LOEL = 100 mg/kg bw/d not teratogenic	M-027442-01-1

Species	Test	Purity %	Guideline, duration, doses and conditions	Result	Study reference
Rat male/female	Sub-chronic neurotoxicity feeding	95.3- 96.0	US-EPA-FIFRA, Guideline 82-5(b); US-EPA OPPTS 870.6200 0-150-1000-3000 ppm equivalent to: 0-9.2-60-177 mg/kg bw/d (male) 0-10.6-71-200 mg/kg bw/d (female)	NOELs (male / female) Overall = 60 / 71 mg/kg bw d Neurotoxicity = >177 / >200 mg/kg bw/d not neurotoxic	M-027986-01-1
Rat male/female	Development al neurotoxicity feeding	95.5- 95.9	US-EPA OPPTS 870.6300; US-EPA Guideline 83-3; US-EPA Pesticide Assessment Guidelines, Subdivision F, addendum 10, neurotoxicity day 0 of gestation until 22 days post partum 0-150-500-1750 ppm (equivalent to: 0-12.9-42.9-142 mg/kg bw/d (gestation) 0-27.3-90.0-299 mg/kg bw/d (lactation)	NOELs (gestation / lactation) Maternal = 42.9 / 90.0 mg/kg bw/d Developmental = 12.9 / 27.3 mg/kg bw/d Developmental neurobehavioral effects > 142 / > 299 mg/kg bw/d	M-027178-02-1

Table 5. Mutagenicity profile of technical clothianidin based on *in vitro* and *in vivo* tests

Species	Test	Purity %	Guideline, duration, doses and conditions	Result	Study reference
Salmonella typhimurium / Escherichia coli	Reverse mutation assay 'Ames test' in vitro	95.2- 96.0	Guideline 92/69/EEC, Method B.I4.; OECD 471, US-EPA FIFRA section 84-2; JMAFF 59 NohSan no. 4200; Japan Ministry of Labour No. 77 S. typhimurium: TA 98, TA 100, TA 1535, TA 1537; E. coli: WP2uvrA-0-50-150-500-1500-5000 µg/plate (+/- S9 mix)	Positive (+S9 mix in TA 1535 only)	M-036520-01-1
Salmonella typhimurium / Escherichia coli	Reverse mutation assay 'Ames test' in vitro	≥ 99.0	Guideline 92/69/EEC, Method B.14.; JMAFF 59 NohSan no. 4200 S. typhimurium: TA 98, TA 100, TA 1535, TA 1537; E. coli: WP2uvrA ⁻ 0-313-625-1250-2500-5000 μg/plate (+/-S9 mix)	Negative	M-036420-02-1
Salmonella typhimurium	Reverse mutation assay 'Ames test' in vitro	95.2	Directive 92/69/EEC, Method B.14.; OECD 471; US-EPA 712-C-96-219, OPPTS 870.5265 S. typhimurium: TA 98, TA 100, TA 102, TA 1535, TA 1537 0-16-50-158-500-1581-5000 μg/plate/tube (+/-S9 mix) TA 102: 0-16-32-48-64-80-96-112 μg/plate (+/-S9 mix)	Negative	M-009777-02-1

Species	Test	Purity %	Guideline, duration, doses and conditions	Result	Study reference
Salmonella typhimurium	Reverse mutation assay 'Ames test' in vitro	98.6 (batch NLL 6100- 3), 96.2 (batch 300347 08)	Directive 92/69/EEC, Method B.14.; OECD 471; US- EPA 712-C-96-219, OPPTS 870.5265 S. typhimurium: TA 1535 Batch NLL 6100-3: 0-1000-2000-3000-4000-5000 μg/plate, Batch 30034708: 3000-5000-7000 μg/plate, 0-1000-2000-4000-6000-8000 μg/tube each batch +/- S9 mix, pre-incubation technique	Negative	M-009769-02-1
Bacillus subtilis	DNA repair assay in vitro	≥ 99.0	JMAFF 59 Nohsan No. 4200 0-375-750-1500-3000-6000 μg/disc (+/- S9 mix)	Negative	M-036407-02-1
Chinese hamster lung (CHL) cells	Chromosome aberration assay in vitro	96.0	OECD 473; Directive 92/69/EEC, Annex V, Part B, Method B.10.; US-EPA FIFRA section 84-2; JMAFF 59 Nohsan No 4200 1st assay: 0-156.25-312.5-625-937.5-1250-1875 μg/mL 2nd assay: 0-39 to 1875 μg/mL exposure 4 – 48 hrs, recovery 0 – 18 hrs, +/-S9 mix	Positive (+/- S9 mix)	M-036479-02-1

Species	Test	Purity %	Guideline, duration, doses and conditions	Result	Study reference
Chinese hamster V79 cells	Chromosome aberration assay in vitro	98.0	Directive 92/69/EEC, Method B.10.; OECD 473; US-EPA 712-C-98-223, OPPTS 870.5375 - S9 mix: 0-100-200-300-350-400-700-1000-1200-1400 μg/mL + S9 mix: 0-500-1000-1600-1800-2000 μg/mL	Weakly positive (+ S9 mix)	M-053960-01-1
Mouse lymphoma cells	Gene mutation in mammalian cells in vitro	96.0	OECD 476; Directive 87/303/EEC no. LI 33, Method B. 14.; EPA FIFRA section 84-2; JMAFF 59 Nohsan No 4200 0-312.5-625-1250-1667-2500 μg/mL (+/-S9 mix) 0-300-600-1200-1600-2000 μg/mL (-S9 mix) 0-600-1200-1600-2000-2400 μg/mL (+S9 mix)	Positive	M-036462-02-1
Chinese hamster lung V79 cells	Gene mutation in mammalian cells in vitro	95.2	Directive 88/302/EEC; OECD 476; US- EPA712-C-96-221, OPPTS 870.5300 0-156-313-625-1250-2500-5000 μg/mL (+/- S9 mix)	Negative	M-009761-02-1
Mouse bone marrow cells	Chromosome aberration assay Micronucleus test in vivo	96.0	OECD 474; Directive 92/69/EEC, no. L383A, Method B.12.; EPA section 84-2; JMAFF 59 NohSan No. 4200 0-25-50-100 mg/kg bw (oral)	Negative	M-036435-02-1

Species	Test	Purity %	Guideline, duration, doses and conditions	Result	Study reference
Rat hepatocytes	Unscheduled DNA synthesis in vivo	95.2- 96.2	In accordance with OECD draft guideline 'OECD Guidelines for Testing of Chemicals, Proposal for a New Guideline, "Genetic Toxicology: DNA Damage and Repair/ Unscheduled DNA Synthesis (UDS) Test with Mammalian Liver Cells In Vivo' and in addition Directive 88/302/EEC; OECD 482; US-EPA PB 84-233295 0-2500-5000 mg/kg bw (oral)	Negative	M-009751-03-1

Additional toxicity studies of technical clothianidin manufactured by Bayer CropScience

Species	Test	Purity %	Guideline, duration, doses and conditions	Result [(isomer/form)]	Study Reference
Salmonella typhimuriu m	Reverse mutation assay 'Ames test' in vitro	99.8	OECD 471; 2000/32/EC, Annex 4D; US EPA 712-C-98-247, OPPTS 870.5100 S. typhimurium: TA 98, TA 100, TA 102, TA 1535, TA 1537 0-33-100-333-1000-2500-5000 µg/plate (+/- S9)	Negative	[M-103604-02-1]
Chinese hamster lung V79 cells	Chromosome aberration assay in vitro	99.8	OECD 473; Directive 2000/32/EC, Annex 4A; EPA 712-C-98-223, OPPTS 870.5375 0-200-400-600-750-1000-1500 μg/mL (- S9 mix) 0-500-750-1000-1500 μg/mL (+ S9 mix)	Negative	[M-103614-01-1]

Species	Test	Purity %	Guideline, duration, doses and conditions	Result [(isomer/form)]	Study Reference
Chinese hamster lung V79 cells	Gene mutation in mammalian cells in vitro	99.8	OECD 476; Directive 2000/32/EC, Annex 4E; US EPA 712-C-98-221, OPPTS 870.5300 0-78.1-156.3-312.5-625-1250-2500 µg/mL (+/- S9 mix)	Negative	[M-103610-01-1]
Mouse bone marrow cells	Micronucleus test in vivo	99.8	US-EPA 712-C-98-226, OPPTS 870.5395; OECD 474; Directive 2000/32/EC, Annex 4C 0-75-150-300 mg/kg bw (intraperitoneal)	Negative	[M-103617-01-1]
Rat hepatocyte s	Unscheduled DNA synthesis in vivo	99.8	OECD 486, EC Directive 2000/32, B.39 0-1000-2000 mg/kg bw (oral)	Negative	[M-103622-01-1]
Guinea pig	Skin sensitization	99.3	OECD 406; Guideline 96/54/EC, Method B.6.; US-EPA 712-C-03-197, OPPTS 870.2600	Non-sensitizing	[M-424556-01-2]

Table 6. Ecotoxicology profile of technical clothianidin

Species	Test	Purity %	Guideline, duration, doses and conditions	Result	Study reference
Bobwhite quail (Colinus virginianus)	Acute oral	96.0	14d, US EPA Subdivision E, Guideline 71-1 (1982)	LD50 > 2000 mg /kg bw	M-027064-01-1
Japanese quail (Coturnix coturnix japonica)	Acute oral	97.6	14d, US EPA Subdivision E, Guideline 71-1 (1982)	LD50 = 430 mg /kg bw	M-027285-01-1
Bobwhite quail (Colinus virginianus)	dietary	96.0	8d, OECD 205 (1984)	LC50 > 5200 mg/kg diet	M-027059-01-1
Mallard duck (Anas platyrhynchos)	dietary	96.0	8d, OECD 205 (1984)	LC50 > 5200 mg/kg diet	M-027068-01-1
Bobwhite quail (Colinus virginianus)	Reproduction	97.6	20 weeks, OECD 206	NOEC = 500 mg/kg diet	M-027293-01-1

Species	Test	Purity %	Guideline, duration, doses and conditions	Result	Study reference
Mallard duck	Reproduction	97.6	20 weeks, OECD 206	NOEC = 500 mg/kg diet	M-027289-01-1
(Anas platyrhynchos					
Rainbow trout	acute	96.0	96h, static, limit test, OECD 203	LC50 > 100 mg/L	M-027029-02-1
(Oncorhynchus mykiss)					
Bluegill	acute	97.6	96h, static, limit test, OECD 203	LC50 > 120 mg/L	M-031285-01-1
(Lepomis macrochirus)					
Fathead minnow	Chronic, ELS	97.6	33d, flow-through, US EPA Subdivision E, Guideline 72-4 (1982), US EPA OPPTS draft	NOEC = 20 mg/L	M-031516-01-1
(Pimephales promelas)			guideline 850.1400 (1996)		
Sheepshead minnow	acute	97.6	96h, static, OECD 203	LC50 > 102.5mgLl	M-027244-01-1
(Cyprinodon variegatus)					

Species	Test	Purity %	Guideline, duration, doses and conditions	Result	Study reference
water flea (Daphnia magna)	acute toxicity	97.6	48h, static, OECD 202	EC ₅₀ > 120 mg/L	M-031283-01-1
water flea (Daphnia magna)	chronic toxicity	96.0	21d, semi-static, OECD 211	NOEC = 0.120 mg/L	M-027071-02-1
Mysid shrimp (<i>Mysidopsis</i> <i>bahia</i>)	acute	97.6	96h, flow-through	LC50 = 0.053 mg/L	M-019551-01-1
Mysid shrimp (<i>Mysidopsis</i> <i>bahia</i>)	chronic, life cycle	97.6	39d, flow-though, OPPTS 850.1350	NOEC = 0.0097 mg/L	M-026384-01-1
Oyster (Crassostrea virginica)	acute	97.6	96h, flow-through; OPPTS 850.1025	EC50 > 129.1 mg/L	M-028515-01-1
Green alga (Scenedesmus subspicatus)	chronic toxicity	96.0	72h, static, OECD 201	ErC50 > 270 mg/L	M-027041-02-1

Species	Test	-	Guideline, duration, doses and conditions	Result	Study reference
Green alga	chronic toxicity	97.6	72h, static, OECD 201	ErC50 > 120 mg/L	M-026366-01-1
(Selenastrum capricornutum)					
Sediment dwelling invertebrates	acute	97.6	48h, static	EC50 = 0.029 mg/L	M-032142-01-1
(Chironomus riparius)					
Sediment dwelling invertebrates	chronic	96.1	28d, static, BBA	EC15 = 0.00072 mg/L	M-011874-01-1
(Chironomus riparius)					
Duckweed (Lemna gibba)	chronic	97.6	14d, static renewal, US EPA OPPTS guideline 850.4400 (1996)	EC50 > 121 mg/L	M-031279-01-1
Honeybee	Acute oral	96.0	48h, EPPO guideline n° 170 (1992)	Oral LD50 = 0.004 µg/bee	M-027051-01-1
(Apis mellifera)	Acute contact			Contact LD50 = 0.044 µg/bee	

Species	Test	_	Guideline, duration, doses and conditions	Result	Study reference
Parasitoid (Aphidius rhopalosiphi)	Laboratory	(WG50)	48h, tested as formulated product WG 500 g/kg SETAC (1994)	100 % mortality at 60 g a.s./ha	M-027182-01-1
Predatory mite (Typhlodromus pyri)	Laboratory	50.3 (WG50)	14d, tested as formulated product WG 500 g/kg SETAC (1994)	69 % mortality at 60 g a.s./ha 97 % effect on reproduction at 60 g a.s./ha	M-027179-01-1
Ground dwelling predatory species (Aleochara bilineata)	Laboratory	(WG50)	28d, tested as formulated product WG 500 g/kg SETAC (1994)	89 % corrected mortality at 75 g a.s./ha	M-027200-01-1
Foliage dwelling predatory species (Chrysoperla carnea)	Laboratory	(WG50)	28d, tested as formulated product WG 500 g/kg SETAC (1994)	97 % corrected mortality at 60 g a.s./ha	M-027198-01-1
Earthworm (Eisenia fetida)	acute	96.0	14d, OECD 207	LC50 = 13.2 mg/kg soil	M-027046-01-1

Species	Test		Guideline, duration, doses and conditions	Result	Study reference
Nitrogen transformation Soil respiration		49.3 (WG50)	28d, OECD 216 and 217	No significant effects (<25%) at 750 g a.s./ha (equivalent to 1 mg a.s./kg soil)	M-027297-01-1
Terrestrial plants (10 species)	Seedling emergence	49.3 (WG50)	14d, OPPTS 850.4100 and 850.4225	NOEC = 225 g a.s./ha	M-026377-01-1
Terrestrial plants (10 species)	Vegetative vigour	49.3 (WG50)	14d, OPPTS 850.4150	NOEC = 225 g a.s./ha	M-026381-01-1

Clothianidin was evaluated by the FAO/WHO JMPR in 2010 and an acceptable daily intake (ADI) of 0–0.1 mg/kg bw per day was established and estimated the acute reference dose (ARfD) as 0.6 mg/kg bw. Clothianidin has not been evaluated by the WHO IPCS.

In the EU the classification process is not yet finalized. In conclusion the only valid classification for the time being (September 2016) is the one proposed by the company based on the current EU regulation EC 67/548 as follows:

FAO SPECIFICATIONS AND EVALUTIONS FOR CLOTHIANIDIN page 43 of 49

Pictograms:

Signal word: Warning

H302: Harmful if swallowed

Hazard statements: H400: Very toxic to aquatic life

H410: Very toxic to aquatic life with long lasting effects

P270: Do not eat, drink or smoke when using this product

P301+312: IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell Precautionary statements:

P273: Avoid release to the environment

P501: Dispose of contents/container in accordance with local regulations

ANNEX 2 REFERENCES

Study number A	uthor(s) year	Study title. Study identification number. Report identification number. GLP [if GLP]. Company conducting the study.
JMPR 2010	2010	http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Report11/Clothianidin.pdf
EPA 2011	2011	Federal Register Vol. 76, No. 86 (4.05.2011) http://www.gpo.gov/fdsys/pkg/FR-2011-05-04/pdf/2011-10706.pdf
CR 2011	2011	Commission Implementing Regulation (EU) No 540/2011 of 25 May 2011 – OJ L 153, 11.6.2011 p. 40.
FAO 2015	2015	http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Specs/Clothianidin_2015_01.pdf
FAO/WHO Manual	2010	Manual on development and use of FAO and WHO specifications for pesticides, November 2010 second revision of the first edition http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/PestSpecsManual2010.pdf
Bascou 2012	2012	E-mail from Jean-Philippe Bascou, Product Chemistry Management, Bayer CropScience, Global Regulatory Affairs, sent on 23. March 2012, 20:40 [from: jean-philippe.bascou@bayer.com to Yang, YongZhen (AGPM)]
Hänel 2015	2015	E-mail from Ralf Hänel, Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, sent on 13. May 2015, 12:51 [from: ralf.haenel@bvl.bund.de to laszlo.bura@efsa.europa.eu]
M-020895-01-1	2000	TI 435-Triazan - Study for the skin sensitization effect in guinea pigs (guinea pig maximization test according to Magnusson and Kligman)
		GLP, Unpublished.
M-424556-01-2	2012	Clothianidin - Study for the skin sensitization effect in Guinea pigs (Guinea pig Maximization test according to Magnusson and Kligman), GLP, Unpublished.
AM025915MP1	2015	Determination of TI 435-Triazane in technical grade active substance Clothianidin (TI 435) HPLC - external standard, GLP Bayer CS AG, Unpublished
an	artijn A 2012 od obrat W	CIPAC Handbook Volume N. Analysis of Technical and Formulated Pesticides, p.15, 2012
M-026219-03-2	2000	Vapor Pressure of TI-435, Pure Active Ingredient
		GLP, Unpublished, Covance Laboratories Inc., Madison, WI, USA
M-025309-02-1 Ka Y.	amiya, 2000 , Itoh, S.	Determination of melting point/melting range of TI-435 pure active ingredient (PAI)
		GLP, Unpublished,
M-026209-04-1	2000	Determination of Dissociation Constant and Physical-chemical Properties of TI-435 Pure Active Ingrdient (PAI) (Density, Solubility, Octanol/Water Partition Coefficient, and Dissociation Constant), GLP,Unpublished.
M-041740-01-1	2001	TI-435 (Pure Active Ingredient, PAI): Determination of the Effect of pH on Water Solubility and Partition Coefficient
		GLP, Unpublished.

M-048047-01-1	2000	(14C)-TI-435: Hydrolytic stability
		GLP, Unpublished.
M-023549-02-1	2000	Photolysis of [nitroimino- ¹⁴ C]TI-435 and [thiazolyl-2- ¹⁴ C]TI-435 in sterile aqueous buffer solution
		GLP, Unpublished.
M-010153-02-1	1999	Determination of the quantum yield and assessment of the environmental half-life of the direct photodegradation of TI-435 in water, GLP, Unpublished.
M-012345-01-1	1999	TI 435; Assay of technical grade active ingredient
		Unpublished.
Smeykal 2012 Sm H.	eykal 2012	Clothianidin (TI 435, AE 1283742), technical substance: Melting point, boiling point, thermal stability
		GLP, Unpublished.
M-027393-01-1	1997	TI-435 - Acute oral toxicity study in the rat
		GLP, Unpublished.
M-027750-03-1	2000	An acute oral neurotoxicity screening study with technical grade TI-435 in Fischer 344 rats
		GLP, Unpublished.
M-027394-01-1	1997	TI-435 - Acute oral toxicity study in the mouse
		GLP, Unpublished.
M-027396-01-1	1997	TI-435 - Acute dermal toxicity study in the rat
		GLP, Unpublished.
M-027390-01-1	1998	TI-435 - Single dose inhalation (head-only) toxicity study in the rat
		GLP, Unpublished.
M-027402-01-1	1997	TI-435 - Skin irritation study in the rabbit
		GLP, Unpublished.
M-027400-01-1	1997	TI-435 - Eye irritation study in the rabbit
		GLP, Unpublished.
M-027406-01-1	1997	TI-435 - Skin sensitisation study in the guinea pig
		GLP, Unpublished.
M-027408-01-1	1997	TI-435 - Toxicity to rats by dietary administration for 4 weeks
		GLP, Unpublished.
M-027413-01-1	1997	Toxicity to mice by dietary administration for 4 weeks
		GLP, Unpublished.
M-027385-01-1	1998	Palability pilot study for dietary concentrations of TI-435 in dogs. Unpublished.
M-027342-01-1	2000	4-week dietary toxicity study with TI-435 in dogs
		GLP, Unpublished.
M-027480-01-1	2000	28-day dermal toxicity study with TI-435 in rats
		GLP, Unpublished.
M-027268-01-1	2000	Technical grade TI 435 - A subchronic toxicity testing study in the rat
		GLP, Unpublished.

M-036499-02-1	2000	13-Week dietary toxicity study with TI-435 in dogs
		GLP, Unpublished.
M-036542-01-1	2000	52-week dietary chronic toxicity study with TI-435 in dogs
		GLP, Unpublished.
M-031986-02-1	2000	104-week dietary combined chronic toxicity and carcinogenicity study with TI-435 in rats
		GLP, Unpublished.
M-032363-02-1	2000	78-week dietary carcinogenicity study with TI-435 in mice
		GLP, Unpublished.
M-027255-01-1	2000	A pilot reproductive toxicity study with TI-435 in the Sprague-Dawley rat. GLP, Unpublished.
M-031280-02-1	2000	A two generation reproductive toxicity study with TI-435 in the Sprague-Dawley rat. GLP, Unpublished.
M-027430-02-1	1998	Oral (gavage) dosage-range developmental toxicity study of TI-435 in rats. GLP, Unpublished.
M-027416-01-1	1998	Oral (gavage) developmental toxicity study of TI-435 in rats
		GLP, Unpublished.
M-027436-02-1	1998	Oral (stomach tube) dosage-range developmental toxicity study of TI-435 in rabbits. GLP, Unpublished.
M-027442-01-1	1998	Oral (stomach tube) developmental toxicity study of TI-435 in rabbits. GLP, Unpublished.
M-027986-01-1	2000	A subchronic neurotoxicity screening study with technical grade TI-435 in Fischer 344 rats. GLP, Unpublished.
M-027178-02-1	2000	Developmental neurotoxicity study of TI-435 administered orally via diet to CRL:CD BR VAF/PLUS presumed pregnant rats. GLP, Unpublished.
M-036520-01-1	2000	TI-435 - Reverse mutation assay 'Ames test' using salmonella typhimurium and escherichia coli. GLP, Unpublished.
M-036420-02-1	1990	Bacterial reverse mutation test of TI 435
		GLP, Unpublished.
M-009777-02-1	1997	TI 435 - Salmonella/microsome test plate incorporation and preincubation method - revised version of Bayer report 26584, first revision. GLP, Unpublished.
M-009769-02-1	1996	Special study - TI 435 - Salmonella/microsome test using salmonella typhimurium TA 1535 plate incorporation and preincubation method - revised version of Bayer report 25739 - first revision, Unpublished
M-036407-02-1	1990	DNA repair test of TIR-435 in Bacillus subtilis
		GLP, Unpublished.
M-036479-02-1	2000	TI-435 - Chromosome aberration test in CHL cells in vitro
		GLP, Unpublished,
M-053960-01-1	2001	TI 435 - In vitro chromosome aberration test with chinese hamster V79 cells. GLP, Unpublished.
M-036462-02-1	2000	TI-435 - L5178Y TK +/- mouse lymphoma assay
		GLP, Unpublished.

M-009761-02-1	1997	TI 435 - Mutagenicity study for the detection of induced forward mutations in the V79-HPRT assay in vitro - revised version of Bayer report 26437, first revision
		GLP, Unpublished.
M-036435-02-1	2000	TI-435 - Micronucleus test in the mouse
		GLP, Unpublished.
M-009751-03-1	1997	TI 435 - Test on unscheduled DNA synthesis with rat liver cells in vivo - revised version of Bayer report 26915, first revision. GLP, Unpublished.
M-103604-02-1	2003	TI-435 - Salmonella typhimurium reverse mutation assay
		GLP, Unpublished,
M-103614-01-1	2003	In vitro chromosome aberration test in Chinese hamster V79 cells with TI-435
		GLP, Unpublished,
M-103610-01-1	2003	Gene mutation assay in Chinese hamster V79 cells in vitro (V79/HPRT) with TI-435
		GLP, Unpublished,
M-103617-01-1	2003	Micronucleus assay in bone marrow cells of the mouse with TI-435*
		GLP, Unpublished,
M-103622-01-1	2003	In vivo/in vitro unscheduled DNA synthesis in rat hepatocytes with TI-435
		GLP, Unpublished,
M-424556-01-2	2012	Clothianidin - Study for the skin sensitization effect in Guinea pigs (Guinea pig Maximization test according to Magnusson and Kligman) GLP, Unpublished,
M-027064-01-1	1998	TI-435 technical - Acute oral toxicity (LD50) to bobwhite quail
		GLP, Unpublished
M-027285-01-1	2000	TI-435 technical: An acute oral toxicity study with the Japanese quail. GLP, Unpublished
M-027059-01-1	1998	TI-435 technical - Dietary LC50 to the bobwhite quail
		GLP, Unpublished.
M-027068-01-1	1998	TI-435 technical - Dietary LC50 to the mallard duck
		GLP, Unpublished,
M-027293-01-1	2000	TI-435 technical: A reproduction study with the northern bobwhite (Colinus virginianus)
		GLP, Unpublished.
M-027289-01-1	2000	TI-435 technical: A reproduction study with the mallard (Anas platyrhynchos)
		GLP, Unpublished.
M-027029-02-1	1998	TI-435 technical - Fish (rainbow trout), acute toxicity test, 96 h, limit test
		GLP, Unpublished, Dr. U. Noack-Laboratorium fuer Angewandte Biologie, Sarstedt, Germany
M-031285-01-1	2000	TI-435 technical - A 96-hour static acute toxicity test with the bluegill (Lepomis macrochirus)
		GLP, Unpublished.

M-031516-01-1	2000	TI-435 technical: An early life-stage toxicity test with the fathead minnow (Pimephales promelas)
		GLP, Unpublished.
M-027244-01-1	1999	TI-435 technical - Fish (Sheepshead minnow), acute toxicity test, limit test, 96 h, semi-static
		GLP, Unpublished.
M-031283-01-1	2000	TI-435 technical - A 48-hour static acute toxicity test with the cladoceran (Daphnia magna)
		GLP, Unpublished.
M-027071-02-1	1998	TI-435 technical - Daphnia magna reproduction test (21 d)
		GLP, Unpublished.
M-019551-01-1	2000	TI-435 technical: A 96-hour flow-through acute toxicity test with the saltwater mysid (Mysidopsis bahia) - final report
		GLP, Unpublished-
M-026384-01-1	2000	TI-435 technical: A flow-through life-cycle toxicity test with the salwater mysid (Mysidposis bahia)
		GLP, Unpublished.
M-028515-01-1	1999	TI-435 technical - Oyster, acute toxicity test (shell deposition), limit test, flow-through, 96 h
		GLP, Unpublished, Dr. U. Noack-Laboratorium fuer Angewandte Biologie, Sarstedt, Germany
M-027041-02-1	1998	TI-435 technical - Alga, growth inhibition test (120 (h)) (Scenedesmus subspicatus)
		GLP, Unpublished.
M-026366-01-1	2000	TI-435 technical - A 5-day toxicity test with the freshwater alga (Selenastrum capricornutum)
		GLP, Unpublished.
M-032142-01-1	2001	TI-435: Comparative acute toxicity of Chironomus riparius with TZMU, MU, TZNG and MNG
		GLP, Unpublished-
M-011874-01-1	1999	Infuence of TI 435 technical on development and emergence of larvae of Chironomus riparius in a water-sediment system
		GLP, Unpublished.
M-031279-01-1	2000	TI-435 technical - A 14-day static-renewal toxicity test with duckweed (Lemna gibba G3)
		GLP, Unpublished.
M-027051-01-1	1998	Final report - TI-435 technical: Acute contact and oral toxicity to honeybees
		GLP, Unpublished.
M-027182-01-1	1999	Final report - TI-435: Tier I standard laboratory bioassay of the effects of fresh residues on Aphidius rhopalosiphi (Hymenoptera, Braconidae)
		GLP, Unpublished.

M-027179-01-	I	1999	Final report - TI-435: Tier I standard laboratory bioassay of the effects of fresh residues on Typhlodromus pyri (Acari, Phytoseiidae)
			GLP, Unpublished.
M-027200-01-1	1	1999	A laboratory evaluation of the effects of TI-435 50% WDG on adults of the staphylinid beetle, Aleochara bilineata
			GLP, Unpublished.
M-027198-01-1	I	1999	Final report - TI-435: Tier I standard laboratory bioassay of the effects of fresh residues on Chrysoperla carnea (Neuroptera, Chrysopidae)
			GLP, Unpublished.
M-027046-01-1	1	1998	Final report - TI-435 technical: Acute toxicity to the earthworm Eisenia foetida
			GLP, Unpublished.
M-027297-01-1	I	1999	The effect of TI-435 50 % WDG on soil microflora (OECD guidelines 216 and 217 for the testing of chemicals. Revised draft documents, January 1999)
			GLP, Unpublished.
M-026377-01-1	1	2000	TI-435 50 % WDG: A toxicity test to determine the effects of the test substance on seedling emergence of ten species of plants
			GLP, Unpublished.
M-026381-01-1	I	2000	TI-435 50 % WDG: A toxicity test to determine the effects of the test substance on vegetative vigor of ten species of plants
			GLP, Unpublished.
CIPAC F	Martijn A and Dobrat W	1995	CIPAC Handbook Volume F. Physico-chemical Methods for Technical and Formulated Pesticides
CIPAC J	Martijn A and Dobrat W	2000	CIPAC Handbook Volume J. Analysis of Technical and Formulated Pesticides
CIPAC K	Martijn A and Dobrat W	2003	CIPAC Handbook Volume K. Analysis of Technical and Formulated Pesticides